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ABSTRACT1

We propose an alternative approach to an equitable and Pareto-improving transportation system based on2

cooperation among travelers assisted by defector penalty. In the theoretical analysis, it is shown that when3

the value of time (VOT) is bounded from above, a Pareto-improving cooperative scheme without financial4

transactions always exists, in which case the defector penalty is high enough so that all travelers cooperate.5

A more practical and potentially more appealing case is discussed where a certain number of defectors6

exist while the travel time of cooperators is strictly better than that in UE. A mathematical programming7

problem is formulated for the optimal cooperative scheme problem in a general network with Pareto-8

improving constraints and practical considerations on the length the cooperation cycle. Computational9

tests on a simple network and solutions are evaluated in terms of efficiency improvement (total system10

travel time) and equitability (Gini index).11
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INTRODUCTION AND LITERATURE OVERVIEW1

User Equilibrium (UE) is based on the assumption that travelers behave selfishly in a non-cooperative2

manner to minimize their own travel cost. System Optimum (SO) is a traffic state where the total cost of3

the system is minimized. However, SO is not stable as drivers on slow routes will likely shift to the fast4

routes, and cause the system to revert back to UE. Therefore, drivers need to be penalized through charges5

or compensated through rewards for the system to move towards SO. The study of congestion pricing is6

traced back to the early twentieth century when (1) recommended a tax to be levied on any market activity7

that generates negative externalities. (2) proposed a time-varying toll that could completely eliminate8

queuing delay, and thereby maximize system efficiency. A plethora of studies have been conducted in this9

area since then.10

Despite its theoretical appeal, congestion pricing continues to be a hard sell to people. Major11

proposals have been remonstrated by public or political opposition. For example, cordon tolling schemes12

for Edinburgh and Manchester in the UK were rejected by public referenda (2005 and 2008). An online13

petition to the UK government (2007) attracted more than 1.8 million signatures against road pricing, and14

effectively put an end to plans for a national scheme in the UK for the time being. A cordon toll plan15

for New York City was stopped by the New York state legislature (2008) when it declined to vote on the16

proposal. These setbacks illustrate the difficulties of designing congestion pricing schemes that are both17

efficient and publicly acceptable (3).18

There are a wide range of factors for the setbacks, and equity is one of the most cited. Congestion19

pricing sometimes is characterized as a “regressive tax” (4) in that high income travelers who usually have20

a high value of time (VOT) could benefit at the cost of low income travelers’ loss. Innovative solutions21

to the equity issue have focused on the so-called Pareto-improving schemes, where no traveler is worse22

off compared to the no-toll case. Examples include a hybrid scheme between rationing and pricing (5,23

6), alternating charging a given fraction of the drivers (7), Pareto-improving pricing (8), credit-based24

scheme (9), tradable credit scheme (10–13), and toll-and-subsidy scheme (14–16).25

The cooperative scheme (CS) proposed in this research is an extension of the hybrid scheme be-26

tween rationing and pricing, first proposed by (5) for a single bottleneck with flexible demand, and later27

adopted and extended by other researchers, e.g., (6). The major distinction is that the CS in this research28

is applied to route choice in a general network, where the ”rationing” is origin-destination (OD) and29

route-specific. This flexibility allows for potentially more room for improvement in both efficiency and30

equitability, but also renders a more challenging problem.31

It is hypothesized that traveler cooperation will bring about transformative changes to how the32

transportation system is managed (17), and its implementation can be accelerated by technologies includ-33

ing connected and autonomous vehicles (CAV). Specifically, with fully autonomous vehicles, the barrier to34

participation in the cooperative scheme due to cognitive constraint (e.g., inertia against regular switching35

to potentially unfamiliar routes/departure time) and disruption to the execution due to human errors (e.g.,36

failing to follow specified route) can be significantly reduced, and even eliminated.37

As reviewed in (17), cooperation has been studied extensively in behavioral economics and game38

theory to resolve social dilemmas such as Prison’s Dilemma (18). Evolutionary game theory provides a39

competent theoretical framework for addressing the subtleties of cooperation in such situations (19–22).40

(23) conducted experiments on humans playing two-person route choice games in a computer laboratory41

to study decision behavior in repeated games. Results show that a taking-turn strategy that achieves SO42

emerges after the two players have enough experience to perceive the value of cooperation. However,43

computer simulations and additional experiments indicate that oscillatory cooperation in route choice44

games with four players emerge only after a long time period (rarely within 300 iterations).45

Almost all traffic equilibrium studies make the assumption that travelers are non-cooperative, for46

a good reason. With the large number of travelers, the time it takes for cooperation to emerge is too long47
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for the assumption to be practically valid. Penalty to defectors (people who do not cooperate) has been1

suggested (17, 23) to promote cooperation. This study operationalizes the idea in both theoretical and2

computational analyses.3

The remainder of the paper is organized as follows. The next section presents a theoretical analysis4

of the CS for both homogenous and heterogenous VOT. A mathematical formulation of the optimal CS5

problem is then presented along with computational tests. Finally conclusions and future directions are6

provided.7

THEORETICAL ANALYSIS8

Consider a single-OD network (Figure 1) with fixed demand d, connected by two routes: Fast Route with9

a travel time tF at SO and Slow Route with a travel time tS at SO. The two routes have the same travel10

time at UE, tUE , and tF < tUE < tS. xF and xS are the SO flows (positive integers) on Fast Route and Slow11

Route respectively, and xF + xS = d. Travel time is a strictly increasing function of flow.12

FIGURE 1 A single-OD two route network

A CS is defined as travelers taking turns to use Fast Route. Participants of the cooperative scheme13

are called “cooperators”. They use Fast Route on some days and Slow Route on other days following the14

guidance of a central controller to maintain an SO flow pattern on each day, even though the composition15

of the flow varies from day to day due to turn taking.16

When all travelers are cooperators, a naive turn-taking strategy is such that in each cycle of d days,17

each cooperator uses Fast Route for xF days and Slow Route for xS days. The average travel time for each18

cooperator over a cycle is the average SO travel time:19

tSO =
xFtF + xStS

d
(1)

It is evident that tF < tSO < tUE < tS.20

Such a scheme can be directly extended to multiple ODs and more than two routes per OD when21

all travelers are cooperators. For any OD (m,n) with demand dmn, in a cycle of dmn days, each cooperator22

uses the routes in proportion to the SO route flows (positive integers). Since SO flows are maintained23

for each OD, they must be maintained for the network, although the composition of the flows varies. In24

classical traffic assignment problems, flows are fractional numbers instead of integers, however, when the25

flow is large enough, the difference of rounding to integers is negligible (not to mention that flows are26

integers in reality).27
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A shorter cycle is preferred as it demonstrates the value of turn-taking in shorter time and thus more1

appealing for getting public acceptance. With an improved strategy, cooperators take turns by blocks. Let2

g be the greatest common factor of xF and xS. Cooperators are grouped into d/g blocks. In each cycle3

of d/g days, each block of cooperator uses Fast Route for xF/g days and Slow Route for xS/g days. The4

resulting average travel time over a cycle is still tSO. In practical applications, the cycle length might need5

to be controlled below a fairly small number, say, 5 working days, to have a realistic chance of acceptance.6

In such cases, indifference to small travel time differences (e.g., a 5-minute difference for a 1-hour trip)7

can be exploited such that a small number of approximately equal-sized blocks result in approximately8

equal average travel time for each cooperator with the differences under a certain threshold. A turn taking9

strategy of a small number of blocks of cooperators is demonstrated in Figure 2. On day 1, blocks 1 and10

2 use the fast route. On day 2, block 2 switches to slow route and block 3 switches to fast route. And on11

day 3, block 1 and 2 interchanges their route. Thus each block of cooperator uses fast route for 2 days and12

slow route for 1 day.13

FIGURE 2 Turn-taking of 3 blocks of cooperators over a cycle of 3 days

The cooperative scheme is not stable, as a “defector” who stays on Fast Route all the time has14

a lower travel time of tF than a cooperator. As more travelers defect, the cooperative scheme is broken15

and the system reverts back to UE. One way to maintain the cooperative scheme is to impose a defector16

penalty τ to make defection more costly than or at least as costly as cooperation.17

Homogeneous VOT18

If a single VOT of β̄ is assumed for all the travelers, τ≥ β̄(tSO− tF) = β̄(tS− tF)xS/d.19

When τ > β̄(tS− tF)xS/d, defection is more costly than cooperation, and thus no defectors exist20

and no financial transactions.21

When the penalty is exactly β̄(tS− tF)xS/d and the penalty collected from defectors is distributed22

evenly to cooperators, defection is as costly as cooperation. Multiple cooperative schemes exist with23

different number of defectors, n, ranging from 0 to xF . When n = 0, the cooperative scheme is the same24

as described above. When 0 < n < xF , cooperators have to use Fast Route proportionally less often than25

when n = 0 to maintain the SO flow pattern, and their average travel time26

tCS(n) =
(xF −n)tF + xStS

d−n
. (2)

tCS(n) is an increasing function of n, and tCS(n)> tCS(0) = tSO,∀n > 0. In other words, given that the total27

system travel time remains at the SO value, the reduction in travel time for defectors (tF < tSO) is at the28

cost of cooperators in terms of increased travel time. The increased travel time is compensated for by the29

re-distributed defector payment. It can be shown mathematically that defectors and cooperators have the30

same generalized cost (combining time and monetary costs) equal to tSO (in time units). Intuitively, the31

payment is a transfer within the system and thus does not affect total system cost, which remains the SO32
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total travel time. The generalized costs of a defector and cooperator are equal as there are positive numbers1

of both (non-corner solution), and as a result, they must be equal to the average SO travel time. When2

n = xF , the cooperative scheme degenerates to traditional congestion pricing with toll re-distribution,3

where no turn-taking is happening as Fast Route is filled up by defectors. Note that a cooperative scheme4

that does not maintain an SO flow pattern (but still better than UE in total travel cost) is still possible when5

n = xF .6

Heterogeneous VOT7

Realistically, VOT is heterogeneous among travelers. Let β be the random VOT distributed over travelers.8

If the support of β has an upper bound β̌, it is trivial to show that a cooperative scheme (maintaining SO9

flow pattern) always exists with the defector penalty τ≥ β̌(tS− tF)xS/d. This is a much milder condition10

compared to those for Pareto-improving congestion pricing with toll re-distribution [16]. An added advan-11

tage, as mentioned previously, is that no financial transactions are needed and thus the dooming perception12

of “tax” is avoided.13

Practical considerations might lead to an upper bound on the defector penalty, for example, to14

avoid the perception of forced cooperation with the government. When τ < β̌(tS− tF)xS/d, a traveler with15

the threshold VOT, β̈ = (1/τ)(tS− tF)xS/d, is indifferent between cooperation and defection. Travelers16

with a VOT higher than β̈ will defect while those with a VOT lower than β̈ will cooperate. The existence17

condition of the scheme is thus a condition to ensure that the number of defectors is no larger than xF .18

With the same re-distribution scheme, it can be shown that every traveler is better off compared to UE1,19

although the generalized cost is not equalized among travelers due to heterogeneous VOT.20

A potentially more appealing scheme is to set the penalty to a value high enough but not too high,21

so that a certain number of defectors exist while the travel time of cooperators is strictly better than that22

in UE. It appeals to high-VOT travelers by giving them an option to pay for better travel time; it appeals23

to low-VOT travelers by reducing their travel time and on top of that, providing monetary rewards (re-24

distributed defector penalty). The overall scheme would thus be less likely viewed as authoritarian. The25

number of defectors to ensure a strictly improving travel time for cooperators is such that26

n <
xF(tS− tF)−d(tS− tUE)

tUE − tF
. (3)

Under the condition that xF(tS− tF) > d(tS− tUE), such an n always exists. Let Fβ(⋅) be the cumulative27

distribution function of β. The penalty corresponding to a given number of defectors n is F−1
β

(d−n
d )(tS−28

tF)xS/d.29

A MATHEMATICAL PROBLEM FORMULATION FOR OPTIMAL CS IN A GENERAL NET-30

WORK31

The naive CS in the previous section cannot be applied to a real network, as the cycle length must be short32

enough to gain public acceptance. Integer non-linear programming problem formulations are proposed to33

1The traveler with threshold VOT, β̈, has a generalized cost of tSO that is strictly better than tUE . S/he can serve as a
reference for a regular defectors or cooperators whose VOT is different from β̈. A regular defector has a higher VOT and the
same travel time as the threshold defector. It follows that the travel time saving tUE − tF is more valuable than for the threshold
defector in terms of offsetting the penalty. The threshold defector is better off and thus the regular defector is also better off. A
regular cooperator has a lower VOT and the same travel time as the threshold cooperator. When the regular cooperator’s travel
time is lower than that in UE, s/he is better off since the re-distributed penalty can only further reduce the generalized cost.
When the regular cooperator’s travel time is higher than that in UE, the increase in travel time is less detrimental than for the
threshold cooperator in terms of offsetting the re-distributed penalty. The threshold cooperator is better off and thus the regular
cooperator is also better off.
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find optimal CS in a general network with a given cycle length.1

Formulation 12

Let L be the set of links in the network, Imn the set of travelers (all assumed to be cooperators) between3

OD pair (m,n) and D the fixed cycle length. ta(.) is the volume-delay function on link a as a function of4

the flow on link a. A binary variable, xmn
adi is defined to indicate whether a traveler is on a particular link5

on a given day.6

xmn
adi =

{
1, if individual ’i’ of OD pair (m,n) is on link ’a’ on day ’d’
0, otherwise

7

The average daily total travel time of the system Z(x), is calculated as8

Z(x) = ∑
d

∑
a

ta(∑
mn,i

xmn
adi) ∑

mn,i
xmn

adi/D (4)

We set up a set of equity constraints to ensure that the CS is equitable to the cooperators.9

∣ 1
D ∑

d
∑
a

ta(∑
mn,i

xmn
adi)x

mn
adi−umn∣ ≤ εumn,∀(m,n),∀i ∈ Imn (5)

where10

umn =
1

D∗ ∣Imn∣
(∑

d
∑
a

ta(∑
mn,i

xmn
adi) ∑

mn,i
xmn

adi) (6)

Equation 5 ensures that differences of average travel time among cooperators over a cycle falls11

within a certain threshold (e.g. 5%). umn is the average travel time between OD (m,n) over a cycle.12

∑
a∈A(m)

xmn
adi = 1,∀(m,n),∀i,∀d (7)

∑
a∈B(n)

xmn
adi = 1,∀(m,n),∀i,∀d (8)

∑
a∈A(k)

xmn
adi = ∑

a∈B(k)
xmn

adi,∀k ∕= m,n,∀i,∀d (9)

Equations 7 through 9 are the flow conservation constraints. Equation 7 implies that the flow out13

of an origin (m) has to be exactly equal to 1 for any person (i) on any given day (d). Equation 8 implies14

that the flow incoming to a destination (n) has to be exactly equal to 1 for any person (i) on any given day15

(d). Equation 9 implies that the inflow is equal to outflow at any intermediate node for any person(i) on16

any given day(d).17

Therefore, the cooperative scheme is formulated as a constrained non-linear optimization problem,18

P1 min
xmn

adi

Z(x)

s.t. Eqs. (5)− (9)
x ∈ {0,1}
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Formulation 21

The above formulation is an integer non-linear programming problem which is difficult to solve due to the2

combination of non-convexity of Eq. (5) and the integrality constraints. We implemented a Lagrangian3

relaxation algorithm to solve the problem and tested it in small problem instances using Matlab. However4

the efficiency and effectiveness of the algorithm is still a major concern and thus an alternative formation5

is proposed that replaces the equity constraints (Eq. 5) with Pareto-improving constraints.6

1
D ∑

d
∑
a

ta(∑
mn,i

xmn
adi)x

mn
adi ≤ tUE ,∀(m,n),∀i ∈ Imn (10)

where the the average travel time of cooperators over a cycle is on greater than the UE travel time for any7

OD.8

Formulation 2 is as follows:9

P2 min
xmn

adi

Z(x)

s.t. Eqs.(10),(7)− (9)
x ∈ {0,1}

COMPUTATIONAL TESTS10

P2 is easier to solve in that constraint (10) is convex. However the number of integer decision variables,11

which is the product of the total demand (integer), cycle length and number of links, makes the problem12

still difficult. A similar strategy as in the theoretical analysis is adopted where the travelers are divided13

into groups with approximately the same size, and the binary decision variables are defined for groups14

instead of individuals.15

We used BONMIN (Basic Open-source Nonlinear Mixed INteger programming) which is an open-16

source C++ code for solving general MINLP (Mixed Integer NonLinear Programming), run remotely17

through the NEOS web interface.18

We tested P2 in a single-OD two-route network with the following volume-delay functions:19

20

t1 = 2+( x1
3000)

2, t2 = 12+ x1
300021

22

Sensitivity analysis is done by starting with a demand of 9000 users and then scaling it in the range23

of 0.5 to 1.5. Different group sizes ranging from 3 to 5 and cycle lengths in the range of 3 to 5 are also24

tested.25

Table 1 shows the optimal turn taking strategy for 9000 users divided into three groups. It can be26

seen that three groups of cooperators achieve the SO flow pattern by taking turns within a cycle length27

of 3 days. With increased cycle length of 4 and 5 days respectively the resulting average travel times are28

still close to SO and Pareto-improving for each groups. The defector penalty is calculated by taking the29

difference between a free riders (defector) travel time and the highest average travel time of a cooperator.30

A constant VOT of 50$/hr is considered for calculating the defector penalty.31

Figure 3 shows a barplot of average travel time of 3 groups of cooperators at a demand level 9000.32

The red horizontal line in Figure 3 represents the UE travel time. It can be seen that each group of33

cooperators for this demand level has strictly better travel time than UE.34

In order to evaluate the efficiency and equity standard of the cooperative scheme we used two35

matrices: % of maximum travel time improvement (% Max), defined as the difference in average travel36

time between UE and SO, and the GINI coefficient (0 indicates perfect equity, and 1 inequity). Table37

2 shows that when demand is low (4500 and 6750), SO and UE are the same and there is no room for38
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TABLE 1 Optimal Cooperative Scheme for a demand of 9000 users divided into 3 groups

Link 1 Link 2
Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Flow on

link 1
Flow on
link 2

Defector
penalty,$

Day 1 1 0 1 0 1 0 2 1 1.94
Day 2 1 1 0 0 0 1 2 1 1.94
Day 3 0 1 1 1 0 0 2 1 1.94
# of Days on
Link

2 2 2 1 1 1

Day 1 1 0 0 0 1 1 1 2 3.75
Day 2 0 1 1 1 0 0 2 1 3.75
Day 3 0 1 1 1 0 0 2 1 3.75
Day 4 1 1 0 0 0 1 2 1 3.75
# of Days on
Link

2 3 2 2 1 2

Day 1 1 1 0 0 0 1 2 1 4.17
Day 2 0 1 1 1 0 0 2 1 4.17
Day 3 1 0 0 0 1 1 1 2 4.17
Day 4 1 0 1 0 1 0 2 1 4.17
Day 5 1 0 1 0 1 0 2 1 4.17
# of Days on
Link

4 2 3 1 3 2
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FIGURE 3 Average travel time of 3 groups of cooperators over different cycle length
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improvement. When the demand is high enough to create efficiency difference between SO and UE, it1

seems that the higher the demand, the smaller the possible gain from turn taking. GINI indices in all cases2

are fairly small and achieves 0 with 3 groups, indicating that the equity issue is well accounted for. Table3

3 shows that a larger number of groups generally improves both the efficiency and equity of the CS, which4

is reasonable given that a larger number of groups allows for more flexibility in the turn-taking.5

TABLE 2 Performance metrics at different demand level and cycle lengths (3 groups)

Cycle
length
(day)

Demand = 4500 Demand = 6750 Demand = 9000 Demand = 11250 Demand = 13500

% Max GINI % Max GINI % Max GINI % Max GINI % Max GINI
3 0 0 0 0 100 0 89 0 69 0
4 0 0 0 0 81 0.022 89 0.014 69 0.026
5 0 0 0 0 85 0.046 89 0.034 69 0.021

TABLE 3 Performance metrics with different group sizes and cycle lengths (demand = 9000)
Cycle
length
(day)

Number of Groups = 3 Number of Groups = 4 Number of Groups = 5

% Max GINI % Max GINI % Max GINI
3 100 0 96 0.021 96 0.063
4 81 0.022 96 0.031 96 0.028
5 85 0.046 96 0 .029 96 0

CONCLUSIONS AND FUTURE DIRECTIONS6

This research extends the rationing and pricing scheme to a general network to cope with the equity issue7

when driving a transportation system from UE to SO. In the theoretical analysis, it is shown that when8

the value of time (VOT) is bounded from above, a Pareto-improving cooperative scheme without financial9

transactions always exists, in which case the defector penalty is high enough so that all travelers cooperate.10

A more practical and potentially more appealing case is discussed where a certain number of defectors11

exist while the travel time of cooperators is strictly better than that in UE. A mathematical programming12

problem is formulated for the optimal cooperative scheme problem in a general network with Pareto-13

improving constraints and practical considerations on the length the cooperation cycle. Computational14

tests on a simple network and solutions are evaluated in terms of efficiency improvement (total system15

travel time) and equitability (Gini index).16

Future research directions include 1) systematic testing of the CS as formulated (P2) in realistic17

networks, 2) extension of the analysis to probabilistic route choice so that stochastic UE (SUE) emerges18

without interventions, and 3) extension of the formulation to allow a certain fraction of defectors so that19

the system will not be viewed as too authoritarian.20
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